Plot of the first 3D CA projection of the data.
ca_3Dplot.Rd
Plots the first 3 dimensions of the rows and columns in the same plot.
Usage
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
...
)
# S4 method for class 'cacomp'
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
...
)
# S4 method for class 'Seurat'
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
...,
assay = SeuratObject::DefaultAssay(obj),
slot = "counts"
)
# S4 method for class 'SingleCellExperiment'
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
...,
assay = "counts"
)
Arguments
- obj
An object of class "cacomp", or alternatively an object of class "Seurat" or "SingleCellExperiment" with a dim. reduction named "CA" saved.
- xdim
Integer. The dimension for the x-axis. Default 1.
- ydim
Integer. The dimension for the y-axis. Default 2.
- zdim
Integer. The dimension for the z-axis. Default 3.
- princ_coords
Integer. If 1 then principal coordinates are used for the rows, if 2 for the columns. Default 1 (rows).
- row_labels
Numeric vector. Indices for the rows for which a label should be added (label should be stored in rownames). Default NULL.
- col_labels
Numeric vector. Indices for the columns for which a label should be added (label should be stored in colnames). Default NULL (no columns).
- ...
Further arguments.
- assay
SingleCellExperiment assay to obtain counts from.
- slot
Seurat slot from assay to get count matrix from.
Details
Depending on whether `princ_coords` is set to 1 or 2 either the principal coordinates of either the rows (1) or the columns (2) are chosen. For the other the standardized coordinates are plotted (assymetric biplot). Labels for rows and columns should be stored in the row- and column names respectively.
Examples
# Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))
rownames(cnts) <- paste0("gene_", 1:nrow(cnts))
colnames(cnts) <- paste0("cell_", 1:ncol(cnts))
# Run correspondence analysis
ca <- cacomp(obj = cnts, princ_coords = 3)
#> Warning:
#> Parameter top is >nrow(obj) and therefore ignored.
#> No dimensions specified. Setting dimensions to: 9
ca_3Dplot(ca)