An S4 class that contains all elements needed for CA.
cacomp-class.Rd
This class contains elements necessary to computer CA coordinates or Association Plot coordinates, as well as other informative data such as row/column inertia, gene-wise APL-scores, etc. ...
Creates new cacomp object.
Slots
U
class "matrix". Left singular vectors of the original input matrix.
V
class "matrix". Right singular vectors of the original input matrix.
D
class "numeric". Singular values of the original inpt matrix.
std_coords_rows
class "matrix". Standardized CA coordinates of the rows.
std_coords_cols
class "matrix". Standardized CA coordinates of the columns.
prin_coords_rows
class "matrix". Principal CA coordinates of the rows.
prin_coords_cols
class "matrix". Principal CA coordinates of the columns.
apl_rows
class "matrix". Association Plot coordinates of the rows for the direction defined in slot "group"
apl_cols
class "matrix". Association Plot coordinates of the columns for the direction defined in slot "group"
APL_score
class "data.frame". Contains rows sorted by the APL score. Columns: Rowname (gene name in the case of gene expression data), APL score calculated for the direction defined in slot "group", the original row number and the rank of the row as determined by the score.
dims
class "numeric". Number of dimensions in CA space.
group
class "numeric". Indices of the chosen columns for APL calculations.
row_masses
class "numeric". Row masses of the frequency table.
col_masses
class "numeric". Column masses of the frequency table.
top_rows
class "numeric". Number of most variable rows chosen.
tot_inertia
class "numeric". Total inertia in CA space.
row_inertia
class "numeric". Row-wise inertia in CA space.
col_inertia
class "numeric". Column-wise inertia in CA space.
permuted_data
class "list". Storage slot for permuted data.
params
class "list". List of parameters.
Examples
set.seed(1234)
# Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))
rownames(cnts) <- paste0("gene_", 1:nrow(cnts))
colnames(cnts) <- paste0("cell_", 1:ncol(cnts))
res <- APL:::comp_std_residuals(mat=cnts)
SVD <- svd(res$S)
names(SVD) <- c("D", "U", "V")
SVD <- SVD[c(2, 1, 3)]
ca <- new_cacomp(U = SVD$U,
V = SVD$V,
D = SVD$D,
row_masses = res$rowm,
col_masses = res$colm)